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If the function

k(r) = (~) 2(d40.–P) (6)
7,

is expansible in an absolutely convergent

Fourier cosine series [5]

(5) becomes

d, f(fi)

d~2

.

+ (e,(h) + 2 z 0.(’) Cos 21z~
)

f(h) = O (8)
.=l

which is the canonical form of Hill’s equa-
tion. The computation of stability charts for
Hill’s equation, and, thus, the determination

of the pass band and stop band structure of

the dispersion characteristics, follows from
the characteristic equation for Hill’s equation

where ~ denotes the propagation factor in
the Floquet solution to Hill’s equation and
~(h)(o)is an infinite determinant~vho~e
elements are

A(i)(0) ]rn~ = 1 (lo)

‘(h)’”–n (,}2# ?’2). (11)A(h)(o) Im = ~o<h) _ ~m2

This procedure has been described in [1] and

[3]. The solution to Hill’s equation may be

obtained, when B is known, by means of a

procedure outlined in [5] and [6]
In the case of TM wave propagation, one

introduces into (2) the substitutions

(12)

f,m)(z) = .Iy)(() (13)

yielding the differential equation for .f(’’(~),

If c is an even-periodic function, so also is

the function in square brackets and, thus,
one may write

[ ] = !30(’) + 2 & em(’) Cos 2rLr (15)

if the series is absolutely convergent. Hence,

dye)

d{,

m

m-hich is again the canonical form of Hill’s
equation.

Thus, the z dependence of both TE and
TM waves in periodic media is expressible

in terms of Hill functions. The pass band

and stop band characteristics or O@ dia-
grams may be determined from the charac-

CORRESPONDENCE

teristic equation by numerical or graphical
methods and the functional dependence of
the fields from the solutions to the Hill equa-
tion.
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Note on the Measurement of

Material Properties by the Strip-

Line Cavity

It has been found that when making

measurements of the properties of materials

with a strip-line cavity [1 ]– [3 ], results are

obtained which are consistently lower than

expected. The error is the more serious, the
higher the value of the dielectric constant or

permeability, as the case may be, of the
sample.

In the case of measurements of magnetic
properties, the reason for the effect has been

explained elsewhere [4]. The discrepancy is
attributable to demagnetizing factors in the
specimen, and when this is in the form of a
flat slab, placed either vertically against the

end wall of the cavity or horizontally on the
strip, the true relative permeability of an

isotropic specimen E is given by

P(1– iv)

‘= l–Kx-
(1)

where p is the apparent permeability given
by the perturbation formulae of [1] and [3],
and N is the demagnetizing factor of the

specimen appropriate to the direction of the
microwave magnetic field (in M KS units).

It is apparent from this formula that the dif-

ference between K and P increases with in-
creasing ~ and P, being zero for ~ =P = 1.

For large values of P, p approaches the limit-
ing value 1/N.

In the case of measurements of the di-

electric constant, the discrepancy is attribut-
able to the presence of minute air gaps be-
tween the specimen and the strip and ground
plane. The perturbation formula of [1] and
[3] gives a value for the dielectric constant e

which would be correct if the sample fitted
flush with the strip and ground plane. If
there is an appreciable gap, the value of e
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calculated from the perturbation form [[la is
an apparent one. The relati,on between ,2and

the true dielectric constant Z can be CdCU-

lated by means of the concept of a die]cctric

circuit analogous to the well-known ,rnag-
netic circuit. The result is

1 – ez/lz
. .

where x is the total gap height, i.e., the sum
of the gaps at top and bottom of the sanlple,

and h is the distance from the strip tc~ the
ground plane, i.e., the distance b –t h the

notation of [i ]– [3 ]. It is apparent from this

formula that the difference between e and ;
increases with increasing e and i, being zero
for e= F= 1. For large values of ~, e ap-
proaches the limiting value h/~.
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On Mode Losses in Confocal

Resonator and Transmission

Systems

In a recent correspondence Lonngren and

Beyer [1] calculated the lcjsses for a single

iteration in a “beam waveguide” [2] with
circular lenses separated by twice their [ocai

length. Since the confocal Fabry-Perot
resonator with two identical circular mir-

rors may be studied by superimposing
two guided wave beams propagating oppo-
sitely in the given system, the beam-w ;ave-

guide losses allow one tc~ determine the
resonator Q. The problem which Lonngren

and Beyer [1 ] have solved approximately is
to find the eigenvalues yc,n(c) of the iutegral
equation

-!/a,?&)sa,.(c, x)

f

1
. C.T’JCWJ)S..“ (c, Y)YriY (1)

o

for small c. In an earlier work Beyer and
Scheibe [3] obtained values of ~a,m(c) for
large c. The purpose of this corresponc~ence
is to point out that the same information has
been obtained by directly studying the solu-
tions of ( 1).
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This analytic investigation (see Slepian

[4] and Heurtley [5]) involves the deriva-
tion of a differential equation (using the

method of commuting operators) for the

functions Sa,n(c, X),l viz.,

“ -x’’san’’*)*) + (+-33) s~(’x’

Sa,.(c, x) = o. (2)

Here the differential equation eigenvalue

I’~,Jc) is determined by requiring that S~,~
be finite for x = O, 1. Using the solutions of

the differential equation Slepian [4] obtains

the following results for y~,n(c).
1) Fixed a, n. Small c.

(–1)’r(ti + l)r(ti +a + l)cZ~+~+l
?a!m(c) =

2Zm+.+lr(2fi +a+l)r(2t~+ti+2)

[
l–

[2}L + a + l)CA’

4(2% + cx)2(2n + a + 2)2 1
+ 0(,’) ! (3)

2) Fixed a, z. Asymptotically large c

Ya,n(c)

X22u+4n+‘c ‘n+e+ Ie–‘C—— (–1)”{1 – r(n+ l)r(~+a+ 1,

[1+ O(c-’)] ( . (4)

He has also considered the case of fixed a

and asymptotically large n and c. In (3) and

(4) the parameter c is given by

(5)

where k is the wavenumber, R is the radius
of the circular reflector or lens, and Lzu is

equal to the reflector or lens separation; ZOis

their focal length. The power loss in decibel
per iteration is given by

20 M1O [ I ?a,J,(c) / 1; (6)

in [1 ] and [3 ] the authors used the param-

eter a instead given by

Losses calculated using (3) and (4) agree
well with those given in references 1 and 3,
as well as McCumber’s [6] recent tabula-

tions.
Similar results for rectangular mirrors or

lenses ha~e also been given by Slepian [7].

J. C. HEURTLEY
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Uuiversit]- of Rochester

Rochester, N. Y.
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Ferromagnetic Resonance

Linewidth and g-Factor in Ferrites

from 2 to 18 Gc/s

The parameters of the uniform preces-

sion in homogeneously biased ferrite spheres

such as the linewidth and the g-factor are
often used to characterize ferrite materials.

As is well known these data are not always

frequency independent. When they are
measured using the standard cavity tech-

nique it is very diflicult to obtain informa-
tion o~-er a broad frequency band. On the

other hand, it is the actual frequency de-
pendence that may be of interest both for
microwave applications and for a theoretical
understanding of the loss mechanism in fer-
rites.

The purpose of this correspondence is to
present room-temperature measurements on
spheres of some polycrystalline ferrites and

yttrium iron garnet (YIG) obtained by the

crossguide coupler technique proposed by

Stinson [1]. X-band and Ku-band wave.
guide couplers with standard cross sections
were used. The diameter of the coupling
holes were 4 mm and 3 mm, respectively.
For the lower band from 2 to 8.2 Gc/s a

coaxial coupler [2 ] was constructed from a
(3.0 mm/6.5 mm) coaxial line with a cou-
pling hole of -1-mm diameter. The wall
thickness of the coupling hole was in all cases

about 0.3 mm. The ferrite spheres with a

diameter of 1 mm throughout all measure-
ments were fixed in the guides by polyfoam

slabs.
In contrast to Stinson’s original arrange-

ment also, the secondary guide was short-
circuited at one port in a distance of a half-
guide wavelength from the coupling hole.
Hence, the power coupled to the matched

detector is increased by 6 dB in contrast to
the case when the two arms of the secondary
guide are matched. This may be important

for measurements on broad linewidth fer-
rites of small volume. In addition, \ve have

calculated the influence of the radiation

damping of the primary and the secondary
waveguide provided the coupler is excited by

a matched source. The power coupling from
tbe primary to the secondary waveguide
with a short located a multiple of a half-
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waveguide wavelength from the center of
the coupling hole can than be written as

c 47,%’3
—=2010g K,=
dB !J

X.u
+ 20 log

47W
(1)

1 + K,j = X==
11

where a and b are the waveguide wide and
narrow dimensions, respectively, r is the
radius of the ferrite sphere, & the guide

wavelength, and x4. and X.Y are the diagonal

and off-diagonal magnetic susceptibility ele-
ments, respectively, defined in terms of the

external microwave magnetic field. The

quantities K, and Kz depend on the circuitry
of the secondary guide. When the two sec-
ondary arms are matched K1 = 1 and Kz

= 1.5; and when one arm is matched and the
other arm shorted at h,/2 from the hole,
h“l = 2 and h-,=2. If the radiation damping
is not regarded, A“Z = O and we obtain Stin-
son’s formula with KI = 1. The calculation is

based on the assumption that the diameter
of the sphere is much smaller than the

diameter of the hole and that the wall thick-
ness is much smaller than the diameter of
the sphere. The ferrite linewidth AHn mea-

sured at constant frequency and obtained

from the difference of the two dc magnetic

field strengths at the 3-dB points then fol-

lows from (1) as

AH = AH + K, ‘c M.
3afAv ‘ (2)

Here AH is the linewidth defined as the

difference Hz –H, for

/ X..(H)*) 1’ = 0.5 I x., I’m.=,

and M, is the saturation magnetization of
the ferrite. The influence of the radiation

damping can be neglected at broad line-
width materials and ~ <1 mm. W’ith single

crystal garnets at AH=O.5 A/cm, however,
the error can become large in the order of

one-hundred per cent at usual dimensions
and frequencies [3]. An additional shift of
the resonance by the radiation damping
however can be neglected in all these cases.

The frequency dependence of the Iine-
width AH obtained in this manner for some

polycrystalline materials ( R1, R5, and R6
from General Ceramics, YIG from Micro-
wave Chemicals Lab., both U. S. A., and

FXC4B and FXC5E1 from Philips, Ger-
many) is shown in Fig. 1.

The behavior of the YIG linewidth is
characterized by the sharp peak at 4 Gc/s
where the uniform precession enters the
spinwave manifold, in accordance with
measurements first reported by Buffler [4].
The very high linewidth values of R1,

FXC5E1, and FXC4B at low frequencies
can be understood for these ferrites are no

longer saturated at the corresponding
resonance fields. Besides, it is remarkable
that for all materials the linewidth of the

uniform precession inside the spinwave
manifold increases more or less with in-

creasing frequencies as can be expected from
theory.

When the resonance frequency of the uni-
form precession in a sphere is written in the


