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If the function

20 = (L) e ©

is expansible in an absolutely convergent
Fourier cosine series [5]

AE) = o™ + 2 Z 8, cos 2n¢  (7)
(5) becomes
dzf(h)
dg?

+ (0o(h> +2 3009 cos an“) M =0 @8

n=1

which is the canonical form of Hill's equa-
tion. The computation of stability charts for
Hill's equation, and, thus, the determination
of the pass band and stop band structure of
the dispersion characteristics, follows from
thecharacteristic equation for Hill's equation

B
sin? féé = A®W(0) sinZT—\/zg~ 9)

where 8 denotes the propagation factor in
the Floquet solution to Hill’s equation and
A®(0) is an infinite determinant whose
elements are

AB(0) I = 1 (10)

oy —

™ =

(m #n)., (11)

This procedure has been described in {1} and
{3]. The solution to Hill's equation may be
obtained, when g is known, by means of a
procedure outlined in [5] and [6]

In the case of TM wave propagation, one
introduces into (2) the substitutions

w2

F=— (12)
b
U@ (z) = el2fe)(g) (13)
vielding the differential equation for f¢(¢),

@ n 1 d% 3 (de)z
ag? 2e di? 4€ \d¢

+ (L) e =9 | 50 = 0.

If € is an even-periodic function, so also is
the function in square brackets and, thus,
one may write

[ 1=60@+2 3 6. cos2n¢  (15)

n=l
if the series is absolutely convergent. Hence,
a2®
dg?

4 [00(” 42 Z 0,.( cos 2nt | f@ =0 (16)

which is again the canonical form of Hill's
equation.

Thus, the z dependence of both TE and
TM waves in periodic media is expressible
in terms of Hill functions. The pass band
and stop band characteristics or w-8 dia-
grams may be determined from the charac-
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teristic equation by numerical or graphical

methods and the functional dependence of

the fields from the solutions to the Hill equa-
tion.

K. F. Casey

Air Force Institute of Technology
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Dayton, Ohio
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Note on the Measurement of
Material Properties by the Strip-
Line Cavity

It has been found that when making
measurements of the properties of materials
with a strip-line cavity [1]-{3], results are
obtained which are consistently lower than
expected. The error is the more serious, the
higher the value of the dielectric constant or
permeability, as the case may be, of the
sample.

In the case of measurements of magnetic
properties, the reason for the effect has been
explained elsewhere [4]. The discrepancy is
attributable to demagnetizing factors in the
specimen, and when this is in the form of a
flat slab, placed either vertically against the
end wall of the cavity or horizontally on the
strip, the true relative permeability of an
isotropic specimen [ is given by

o st - )

’ 1 —uN
where u is the apparent permeability given
by the perturbation formulae of [1]and [3],
and N is the demagnetizing factor of the
specimen appropriate to the direction of the
microwave magnetic field (in MKS units).
1t is apparent from this formula that the dif-
ference between p and & increases with in-
creasing u and J, being zero for p=g=1.
For large values of I, » approaches the limit-
ing value 1/N.

In the case of measurements of the di-
electric constant, the discrepancy is attribut-
able to the presence of minute air gaps be-
tween the specimen and the strip and ground
plane. The perturbation formula of [1] and
[3] gives a value for the dielectric constant e
which would be correct if the sample fitted
flush with the strip and ground plane. If
there is an appreciable gap, the value of ¢
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calculated from the perturbation formula is
an apparent one. The relation between ¢ and
the true dielectric constant € can be calcu-
lated by means of the concept of a dielectric
circuit analogous to the well-known rmag-
netic circuit. The result is

. e(l — x/h)
1 — ex/h

[

@

where x is the total gap height, i.e., the sum
of the gaps at top and bottom of the sarple,
and % is the distance from the strip to the
ground plane, i.e., the distance —¢ in the
notation of [1]~[3]. It is apparent from this
formula that the difference between ¢ and &
increases with increasing e and €, being zero
for e=€=1. For large values of € e ap-
proaches the limiting value &/x.

The authors wish to thank the Director
of Research of The Marconi Company for
permission to publish this note.
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On Mode Losses in Confocal
Resonator and Transmission
Systems

In a recent correspondence Lonngren and
Beyer [1] calculated the losses for a single
iteration in a “beam waveguide” [2] with
circular lenses separated by twice their focal
length. Since the confocal Fabry-Perot
resonator with two identical circular mir-
rors may be studied by superimposing
two guided wave beams propagating oppo-
sitely in the given system, the beam-wave-
guide losses allow one to determine the
resonator Q. The problem which Lonngren
and Beyer [1] have solved approximately is
to find the eigenvalues ya.(c) of the integral
equation

'Yam(C)Sq,n(C, x)
= folcfa(cxy)sm(c, Wydy (1)

for small ¢. In an earlier work Beyer and
Scheibe [3] obtained values of vq..(c) for
large ¢. The purpose of this correspondence
is to point out that the same information has
been obtained by directly studying the solu-
tions of (1).

Manuscript received May 17, 1965.
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This analytic investigation (see Slepian
[4] and Heurtley [5]) involves the deriva-
tion of a differential equation (using the
method of commuting operators) for the
functions 84,.(c, x),! viz.,

1
A — 280" (c, x) + (;— — 3x) San’ (¢, %)

2
+ (Pa "(C) - — —c%? — i

%2
Sanle, x) = 0. (2)

Here the differential equation eigenvalue
Ta.n(¢) is determined by requiring that 84,
be finite for x=0, 1. Using the solutions of
the differential equation Slepian [4] obtains
the following results for va..(¢).

1) Fixed «, #. Small c.

(—=1D"T(n + DT (n + o + ctntett

Yenl)) = SonT Qnta+DTQ2n+a+t2)
@2n + o + DaZ? ]2
. —_ 0icH |.(3
[ 40n + 0 n g2 T [
2) Fixed «, n. Asymptotically large c.
'Vo:yn@)
D2+ in g ctntat 1=
= (—1)n§1 -_—
T+ 0T+ a4+ 1)

t+oenlf. @

He has also considered the case of fixed «
and asymptotically large z and ¢. In (3) and
(4) the parameter ¢ is given by

kR?
2Zo '

where & is the wavenumber, R is the radius
of the circular reflector or lens, and 2z, is
equal to the reflector or lens separation; z, is
their focal length. The power loss in decibel
per iteration is given by

20 10g1o [ | Yanle) | ©

in [1]and [3] the authors used the param-
eter ¢ instead given by

E \12
= (—-—) R = 2,
ZZO

Losses calculated using (3) and (4) agree
well with those given in references 1 and 3,
as well as McCumber’s [6] recent tabula-
tions.

Similar results for rectangular mirrors or
lenses have also been given by Slepian [7].

J. C. HEURTLEY

W. STREIFER

Dept. of Elec. Engrg.
University of Rochester
Rochester, N. Y.

c =

©)
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Ferromagnetic Resonance
Linewidth and g-Factor in Ferrites
from 2 to 18 Gc¢/s

The parameters of the uniform preces-
sion in homogeneously biased ferrite spheres
such as the linewidth and the g-factor are
often used to characterize ferrite materials.
As is well known these data are not always
frequency independent. When they are
measured using the standard cavity tech-
nique it is very difficult to obtain informa-
tion over a broad frequency band. On the
other hand, it is the actual frequency de-
pendence that may be of interest both for
microwave applications and for a theoretical
understanding of the loss mechanism in fer-
rites.

The purpose of this correspondence is to
present room-temperature measurements on
spheres of some polycrystalline ferrites and
yttrium iron garnet (YIG) obtained by the
crossguide coupler technique proposed by
Stinson [1]. X-band and Ku-band wave-
guide couplers with standard cross sections
were used. The diameter of the coupling
holes were 4 mm and 3 mm, respectively.
For the lower band from 2 to 8.2 Ge¢/s a
coaxial coupler [2] was constructed from a
(3.0 mm/6.5 mm) coaxial line with a cou-
pling hole of 4-mm diameter. The wall
thickness of the coupling hole was in all cases
about 0.3 mm. The ferrite spheres with a
diameter of 1 mm throughout all measure-
ments were fixed in the guides by polyfoam
slabs.

In contrast to Stinson’s original arrange-
ment also, the secondary guide was short-
circuited at one port in a distance of a half-
guide wavelength from the coupling hole.
Hence, the power coupled to the matched
detector is increased by 6 dB in contrast to
the case when the two arms of the secondary
guide are matched. This may be important
for measurements on broad linewidth fer-
rites of small volume. In addition, we have
calculated the influence of the radiation
damping of the primary and the secondary
waveguide provided the coupler is excited by
a matched source. The power coupling from
the primary to the secondary waveguide
with a short located a multiple of a half-
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waveguide wavelength from the center of
the coupling hole can than be written as

C 4r?y?
—— = 20 log | Ky
dB 3abn,
-+ 20 log Xev n
11K 472 r3
4 Satng brg

where ¢ and b are the waveguide wide and
narrow dimensions, respectively, » is the
radius of the ferrite sphere, A, the guide
wavelength, and x.. and x., are the diagonal
and off-diagonal magnetic susceptibility ele-
ments, respectively, defined in terms of the
external microwave magnetic field. The
quantities K; and K> depend on the circuitry
of the secondary guide. When the two sec-
ondary arms are matched Ki=1 and K.
=1.5; and when one arm is matched and the
other arm shorted at A\,/2 from the hole,
K;=2 and K;=2. If the radiation damping
is not regarded, K»=0 and we obtain Stin-
son’s formula with K;=1. The calculation is
based on the assumption that the diameter
of the sphere is much smaller than the
diameter of the hole and that the wall thick-
ness is much smaller than the diameter of
the sphere. The ferrite linewidth AH,, mea-
sured at constant frequency and obtained
from the difference of the two dc magnetic
field strengths at the 3-dB points then fol-
lows from (1) as
4?3

AHp = AH -+ Ko ——'— M.
R bh, 2)

Here AH is the linewidth defined as the
difference H,—H, for

J XIU([{I,Z) !2 = 05, Xzy ‘Zmax,

and Af; is the saturation magnetization of
the ferrite. The influence of the radiation
damping can be neglected at broad line-
width materials and »<1 mm. With single
crystal garnets at AH~0.5 A/cm, however,
the error can become large in the order of
one-hundred per cent at usual dimensions
and frequencies [3]. An additional shift of
the resonance by the radiation damping
however can be neglected in all these cases.

The frequency dependence of the line-
width AH obtained in this manner for some
polycrystalline materials (R1, R5, and R6
from General Ceramics, YIG from Micro-
wave Chemicals Lab., both U.S.A., and
FXC4B and FXCSE1 from Philips, Ger-
many) is shown in Fig. 1.

The behavior of the YIG linewidth is
characterized by the sharp peak at 4 Gce/s
where the uniform precession enters the
spinwave manifold, in accordance with
measurements first reported by Buffler [4].
The very high linewidth values of RI1,
FXCSE1L, and FXC4B at low frequencies
can be understood for these ferrites are no
longer saturated at the corresponding
resonance flelds. Besides, it is remarkable
that for all materials the linewidth of the
uniform precession inside the spinwave
manifold increases more or less with in-
creasing frequencies as can be expected from
theory.

When the resonance frequency of the uni-
form precession in a sphere is written in the



